Tuning the plasmon energy of palladium–hydrogen systems by varying the hydrogen concentration

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
2012 J. Phys.: Condens. Matter 24 104021
(http://iopscience.iop.org/0953-8984/24/10/104021)

View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 158.227.180.67
The article was downloaded on 22/02/2012 at 08:43

Please note that terms and conditions apply.
Tuning the plasmon energy of palladium–hydrogen systems by varying the hydrogen concentration

V M Silkin1,2,3, R Díez Muñó2,4, I P Chernov5, E V Chulkov1,2,4 and P M Echenique1,2,4

1 Departamento de Física de Materiales, Facultad de Químicas UPV/EHU, Apartado 1072, 20080 San Sebastián, Spain
2 Donostia International Physics Center (DIPC), P de Manuel Lardizabal 4, 20018 San Sebastián, Spain
3 IKERBASQUE, Basque Foundation for Science, 48011, Bilbao, Spain
4 Centro de Física de Materiales CFM (CSIC-UPV/EHU)—Materials Physics Center MPC, P Manuel de Lardizabal 5, 20018 San Sebastián, Spain
5 Tomsk Polytechnical University, prospekt Lenina 30, 634050 Tomsk, Russia

E-mail: waxslavs@sq.ehu.es (V M Silkin)

Received 26 July 2011, in final form 11 November 2011
Published 21 February 2012
Online at stacks.iop.org/JPhysCM/24/104021

Abstract
First-principles calculations are performed to obtain the dielectric function and loss spectra of bulk PdHx. Hydrogen concentrations between x = 0 and 1 are considered. The calculated spectra are dominated by a broad peak that redshifts in energy with x. The obtained bulk dielectric function is employed to compute the loss spectra of PdHx spherical nanoparticles as a function of x. The dominant plasmon peak in the spherical nanoparticle is lowered in energy with respect to the bulk case. However, the dependence of the resonance energy on the hydrogen concentration is roughly similar to that in bulk.

(Some figures may appear in colour only in the online journal)

1. Introduction
Collective electronic excitations—plasmons—play a key role in a vast number of phenomena and have been intensively studied for decades. In particular, great effort has been devoted recently to the investigation of localized surface plasmons (LSPs) in metallic nanoparticles. LSPs are collective excitations of the valence band electrons, similar to conventional surface plasmons in extended systems [1, 2]. The energy of LSPs depends on the particle size, shape, dielectric properties and temperature, as well as on the optical properties of the environment [3, 4]. The optical response of metal nanostructures such as nanoshells [5, 6], nanodisks [7, 8], nanorings [9, 10] and others is governed by an LSP peak, red-shifted in energy with respect to the bulk plasmon. The properties of LSPs can be tuned over an extended wavelength range and many applications based on LSPs have thus been developed, including ultrasensitive chemical sensing [11, 12], biomedical activity [13, 14] and photovoltaic devices [15].

Recently, LSPs have been successfully used to monitor the changes in the crystalline structure of Pd nanoparticles upon H absorption [8]. Bulk and nanoparticle metal hydrides have been extensively studied due to their importance in many applications such as hydrogen storage [16–21]. The novel scheme [8] is based on the modification of the optical properties of nanoparticles, i.e. the shift in energy of the LSP peak, during the H absorption process. This direct nanoplasmonic sensing technique is highly promising but quantitative measurement of the H absorbed in the nanoparticle requires an accurate conversion of the LSP energy shift to H concentration. Although a linear dependence of the LSP response of palladium on hydrogen uptake used in [8] seems well grounded [10], there is no theoretical support for its validity. In this respect, a key question is how the dielectric properties of a PdHx system evolve with variation...
of \(x \). The goal of the present paper is to provide new insight into this problem based on first-principles calculations of the electron energy-loss spectra of \(\text{PdH}_x \), for bulk and nanoscale systems.

Palladium can easily absorb hydrogen through several elementary steps, namely, \(\text{H}_2 \) molecular dissociation at the surface, diffusion of \(\text{H} \) atoms into the lattice, and localization at interstitial sites. In bulk, the influence of \(\text{H} \) absorption on the \(\text{Pd} \) electronic structure has been thoroughly analyzed [22–26]. Hydrogen absorption reduces the width of the \(\text{Pd} \) valence \(d \)-band and induces new electronic states at energies just below the bottom of the band. Increasing the \(\text{H} \) concentration in \(\text{PdH}_x \) results also in a strong reduction of the density of states at the Fermi level for \(x \geq 0.6 \). Concerning the influence of these changes in \(\text{PdH}_x \) optical properties, EELS measurements show that the dominant bulk plasmon energy is gradually shifted from \(\sim 7 \) eV in clean \(\text{Pd} \) to \(\sim 5 \) eV in \(\text{PdH}_{0.7} \) [25]. This strong shift cannot be explained in terms of a simple free-electron-gas picture. Interband transitions from occupied \(\text{Pd} \) \(d \)-bands to unoccupied \(\text{H} \)-modified sp states come into play, as shown by recent \(ab \) \(initio \) calculations for \(\text{Pd} \) and \(\text{PdH} \) [27]. Nevertheless, a detailed theoretical analysis of the plasmon peak in \(\text{PdH}_x \) for \(x \to 0 \) and \(x \to 1 \) has been performed, using \(ab \) \(initio \) methods within the framework of time-dependent density functional theory (TDDFT) [29] and within linear response, the Fourier coefficients of the density-response function of the system \(\chi_{G,G'}(q,\omega) \) can be obtained through the following integral equation:

\[
\chi_{G,G'}(q,\omega) = \chi_{G,G'}^{(0)}(q,\omega) + \sum_{G_1,G_2} \sum_{G_3,G_4} \chi_{G_3,G_4}^{(0)}(q,\omega) \times [\nu G_1(q)\delta_{G_1,G_2} + K_{G_1,G_2}^{xc}(q,\omega)] \chi_{G_3,G_4'}(q',\omega),
\]

(1)

where all \(G \)s are the reciprocal lattice vectors, \(\nu G_1 \) is the bare Coulomb potential, \(K_{G_1,G_2}^{xc} \) accounts for dynamical exchange–correlation effects, and \(\chi_{G,G'}^{(0)} \) are the Fourier coefficients of the density-response function for a noninteracting electron system built from the DFT Kohn–Sham energies \(\varepsilon_{nk} \) and wavefunctions \(\psi_{nk} \). The imaginary part of the matrix \(\chi_{G,G'}^{(0)}(q,\omega) \) can be evaluated [30] with the use of a spectral function matrix according to the expression

\[
S_{G,G'}^{(0)}(q,\omega) = -\frac{1}{\pi} \text{sgn}(\omega) \text{Im}[\chi_{G,G'}^{(0)}(q,\omega)],
\]

(2)

where \(S_{G,G'}^{(0)}(q,\omega) \) is defined as

\[
S_{G,G'}^{(0)}(q,\omega) = \frac{2}{\Omega} \sum_{k \in \text{BZ}} \sum_{\text{occ}} \sum_{n' n} \delta(\varepsilon_{nk} - \varepsilon_{n'k+q} + \omega) \times \langle \psi_{nk}|e^{-i(q+G')^r}\varepsilon_{n'k+q}\psi_{nk}\rangle \cdot \langle \psi_{nk}|e^{i(q+G')^r}\varepsilon_{n'k+q}\psi_{nk}\rangle.
\]

(3)

Here \(n, n' \) are band indices, the wavevectors \(k \) and \(q \) are in the first Brillouin zone (BZ), the factor 2 accounts for the spin, and \(\Omega \) is the normalization volume.

The Fourier coefficients of the electron energy-loss function \(\text{Im}[\epsilon_{G=0,G'=0}(q,\omega)] \equiv \text{Im}[\epsilon^{-1}(q,\omega)] \) for momentum transfer \(q \) and energy \(\hbar \omega \) can then be obtained from those of \(\chi_{G,G'}(q,\omega) \) through

\[
\epsilon_{G,G'}^{-1}(q,\omega) = \delta_{G,G'} + \nu G_1(q) \chi_{G,G'}^{(0)}(q,\omega).
\]

(4)

For our calculation of the excitation spectra, we perform a full inversion of the matrix \(\chi_{G,G'}(q,\omega) \) (see equation (1)), with up to 50 values of \(G \) and \(G' \) considered. Nevertheless, we have checked that local field effects [31] are minor in the range of energies considered although some effect at higher energies is observed in agreement with previous work [32]. We have performed calculations of the density-response function for interacting electrons, \(\chi \), using equation (1) for two kinds of the exchange–correlation kernel \(K^{xc} \), namely within a random-phase approximation (RPA) when \(K^{xc} = 0 \) and an adiabatic local density approximation (ALDA) with

\[
K_{G_1,G_2}^{xc}(q,\omega) = \int \frac{dV_{xc}(n)}{dn} \frac{dV_{xc}(n)}{dn} \left| \frac{dV_{xc}(n)}{dn} \right| n = n_0(r).
\]

(5)

Here \(V_{xc}(n) \) is the exchange–correlation potential of a homogeneous electron gas of density \(n \) and \(n_0(r) \) is the self-consistent valence electron density at spatial coordinate \(r \). Comparison of these two sets of data have verified that they are almost identical in the reported energy region, i.e. the dynamical exchange–correlation effects beyond the RPA play a minor role in the studied systems like in other \(d \) metals [33].
3. Results and discussion

In figure 1 we plot the real ϵ_1 and imaginary ϵ_2 parts of the dielectric function $\epsilon = \epsilon_1 + i\epsilon_2$ of bulk PdH$_x$, for different values of x, as a function of the energy ω (in eV). The bottom part of each panel shows the bulk loss function $\text{Im}(\epsilon^{-1})$ (thick black line) and the particle absorption spectra (thin orange line) for the same systems.

The previous analysis refers to bulk. Similar influence of the H absorption on the position of the LSP peak can be found in finite nanosystems. In order to include finite size effects in a simplified way, we consider the polarizability α of a spherical particle in vacuum in the Rayleigh limit, for which the absorption spectrum is proportional to $\text{Im}[\alpha] \propto \text{Im}[(\epsilon - 1)/(\epsilon + 2)]$. This approximation, in which size effects are neglected, should remain valid as long as the wavelength of the external field is much larger than the nanoparticle size. We introduce our bulk-calculated $ab\text{ initio }\epsilon$ into this expression to obtain the absorption spectrum of PdH$_x$ spherical nanoparticles. Figure 1 shows the evolution of these characteristics for different values of x as a function of the excitation energy. The qualitative behavior of the LSP peak with x is similar to that in bulk, although the resonance energy is shifted to slightly lower values.

The redshift of the LSP energy due to the finite size of the PdH$_x$ nanoparticles can be quantified with the help of figure 2, in which the plasmon peak position in bulk ω_{pl} and spherical nanoparticles ω_{LSP} is plotted as a function of the absorbed H concentration. Experimental results for the plasmon position in bulk PdH$_x$ materials [25, 34, 35] are shown in figure 2 as well. Note that, in figure 1, the dominant peak in the particle absorption spectra has a strongly non-Lorentzian shape for $x = 0$. For this reason, we have fitted this peak with two Lorentzians and the corresponding energy values are presented in figure 2. Also we highlight the energy position of a prominent shoulder around 2.75 eV at $x = 1$. In general, a monotonous decrease of both ω_{pl} and ω_{LSP} upon increase of the H concentration x is found, with a notable drop at $x \approx 0.75$. At this value of x, the d-band becomes totally occupied and falls below the Fermi level. The Fermi surface is then mostly of sp-character and the weight of intraband transitions at the Fermi level in the excitation spectrum is drastically reduced [36–38].

Figure 1. Set of panels containing real (solid blue line) and imaginary (dotted red line) parts (top part of each panel) of the dielectric function $\epsilon = \epsilon_1 + i\epsilon_2$ of bulk PdH$_x$, for different values of x, as a function of the energy ω (in eV). The bottom part of each panel shows the bulk loss function $\text{Im}(\epsilon^{-1})$ (thick black line) and the particle absorption spectra (thin orange line) for the same systems.
The results in figure 2 are also compared with those extracted from a simplified Drude-like description of the nanoparticle dielectric function ε_{D}, in which the plasmon energy is approximated by $\omega_{\text{LSP}} = \omega_{\text{D}}/\sqrt{3}$. The difference between the values of ω_{LSP} and ω_{D} proves that the optical absorption properties of PdH$_x$ nanoparticles cannot be estimated from free-electron-like arguments. Electronic structure effects bring about distinct changes in the absorption spectra.

Qualitatively, the plasmon energy shift in PdH$_x$ is consistent with existing experimental information. The energy of LSP peaks in pure Pd nanodisks ranges between roughly 1 and 2.5 eV depending on the disk diameter [7]. Exposure to hydrogen shifts the LSP absorption peak to lower energies in nanodisks [8]. Pd and PdH nanorings show resonance peaks at similar low energies [10]. Detailed calculations of the electronic response for particular sizes and shapes of PdH$_x$ nanosystems would then be necessary to perform a more quantitative comparison of the dependence of LSP absorption peaks on H concentration.

4. Conclusions

In summary, we have presented a basic ingredient for the evaluation of the optical properties of PdH$_x$ nanoparticles—the corresponding dielectric function—for H concentrations ranging from $x = 0$ to 1. Our first-principles calculations of the dielectric properties of PdH$_x$ systems show how the modifications in the electronic structure of PdH$_x$ with H concentration are reflected in the absorption spectra. In particular, the plasmon energy in bulk (nanoparticle) PdH$_x$ is a decreasing function upon increase of H concentration x and red-shifted roughly ≈ 3.5 eV (≈ 2.5 eV) from $x = 0$ to 1.

Our findings demonstrate the importance of this kind of calculation in determining the dielectric properties of non-free-electron-like metal systems such as PdH$_x$. In addition, ab initio results of the dielectric function are ready to be used as valuable input for subsequent semiclassical calculations of the optical response [9, 39]. The latter can take into account size, shape and chemical environment effects. The combination of both methodologies is thus a powerful tool to accurately obtain from purely theoretical grounds the electromagnetic response of finite systems in the nanoscale.

Acknowledgments

This work was supported in part by the Basque Departamento de Educacióan, Universidades e Investigación (grant No. IT366-07), the Basque Departamento de Industria through the E TORTEK project, and the Spanish Ministerio de Ciencia e Innovación (grant No. FIS2010-19609-C02-00).

References

Figure 2. Energy (in eV) of calculated LSP ω_{LSP} in PdH$_x$ spherical nanoparticles as a function of hydrogen concentration x (circles). The plasmon peak positions in the bulk case ω_{D} (diamonds) and the Drude-like plasmon peak positions $\omega_{\text{D}}^{\text{SP}}$ in spherical nanoparticles (squares) are shown as well. The open diamonds, open triangle, and filled triangles present bulk plasmon energy values measured in [25], [34], and [35], respectively.

[34] Nishijima M, Jo M, Kuwahara Y and Onchi M 1986 \textit{Solid State Commun.} \textbf{58} 75

